STATE OF NEW HAMPSHIRE

BEFORE THE

NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION

DOCKET NO. DE 10-195

REBUTTAL TESTIMONY OF

GEORGE E. SANSOUCY, P.E.

ON BEHALF OF

THE CITY OF BERLIN

Request for Approval of Power Purchase Agreement

Between

Public Service Company of New Hampshire

And

Laidlaw Berlin BioPower, LLC

Docket: DE 10-195 George E. Sansoucy, P.E., LLC

January 2011

INTRODUCTION AND PURPOSE

Q. Please state your name, position and business address.

A. My name is George E. Sansoucy. My business address is 32 Nimble Hill Road, Newington,

New Hampshire 03801. I am the owner/member of George E. Sansoucy, P.E., LLC.

Q. Have you testified before the NH PUC before?

A. Yes, on several occasions.

Q. What is the purpose of your testimony?

A. Purpose of my testimony is to support the City of Berlin's position that the PPA between

Laidlaw and Public Service Company of New Hampshire is in the public interest, should be

approved, and represents a good deal.

Also, the purpose of my testimony is to rebut Staff, OCA, Concord Steam, and the Wood Fired

IPP's testimony in this case that the project is not in the public interest, should not be approved,

and is not a good deal.

Docket: DE 10-195

Q.	Are you sponsoring any exhibits?
A.	Yes, I am sponsoring the following exhibits:
	Exhibit 1 – Found at www.puc.nh.gov/TransmissionCommission.htm Figure 1 in the
	KEMA, Inc. Report on Transmission Cost Allocations.
	Exhibit 2 – PSNH Franchise Map, <u>www.puc.nh.gov</u>
	Exhibit 3 – Potential Power Plant Retirements in the New England ISO
	Exhibit 4 – Unit Capacity by Age
	Exhibit 4A – Cumulative Capacity by Age
	Exhibit 5 – Total ISO NE Capacity Load Growth (CAGR)
	Exhibit 6 - Ten Year Summary of Total System Loads and Use (Source: NE ISO)
	Exhibit 7 – 2010 Summary of Total System Loads and Use (Source: NE ISO)
	Exhibit 8 – Natural Gas Price and Volatility
Q.	Do you believe the siting of the plant in Berlin is appropriate, in the public interest, and good for the rate payers?
A.	Yes.
Q.	Have you provided information regarding siting already in this case?
A.	Yes, as a data response to the IPP's.

Docket: DE 10-195 George E. Sansoucy, P.E., LLC January 2011

Q. Could you please provide the same testimony herein in order to bind the information into

the record?

A. Yes, my original testimony, plus proofing is as follows:

The following factual items are, in general, the basis for my opinion that the Laidlaw plant is

correctly sited in the proper location and provides cost effective benefits to the ratepayers:

1. The plant is sited at the location of and utilizes an existing boiler, boiler stack, and other

appurtenances. The existing boiler was constructed in the 1990's as a black liquor boiler

for chemical recovery. As such, the boiler is substantially built. It includes its own stack,

is foundationed on ledge, and has less than ten (10) years burn time on the boiler. The

existing boiler infrastructure located in Berlin is anticipated to save the project at least

\$500 per kilowatt of gross kilowatt capacity (\$35,000,000). This makes sense because

the boiler cost approximately \$100,000,000 to build originally in the 1990's. The reuse

of this infrastructure provides at least \$35,000,000 of benefits to the project and may in

fact be the deciding factor for the construction of this project. A new greenfield wood

fired electric generation plant generally costs \$3,500 per kilowatt installed, in this case,

\$250,000,000 total. The Laidlaw project has a current total project cost of between

\$160,000,000 and \$170,000,000, thereby indicating that the siting in Berlin utilizing the

existing infrastructure is saving approximately \$80,000,000 to \$90,000,000. This savings

is directly translated into reduced energy, capacity, and REC costs incurred by Public

Service for the ratepayers of Public Service.

2. The Berlin site, approximately 60 acres, is about half of a much larger site, is properly

zoned and supported administratively for the development of the facility without zoning

variances. The size of the lot provides for a large wood yard, the existing scales can be

reused, warehouses are already in place for the construction and operation of the

facilities, and there is adequate land for round wood storage, bark handling, debarking,

on-site chipping, trash storage, and a variety of other activities related to a biomass

electric generation plant in Berlin. There are very few sites, if any, in the State of New

Hampshire available to construct a biomass generation plant of this size that are ready for

construction and offer the attributes this site provides. This reduces the cost to the rate

payers of PSNH.

3. The Berlin site has water. Water is one of the single most important and most difficult

elements to overcome in the siting of a new fossil fired or biomass fired generation plant.

This site has two (2) existing water sources. The first is the City of Berlin's municipal

water. The site is fully developed with water mains, backflow preventers, gate valves,

and system piping which was utilized by the mill and are still in existence. The City of

Berlin's water department has adequate water resources to provide water to the Laidlaw

plant. The average estimated water consumption of approximately 1.4 million gallons

per day is not easily secured in the State of New Hampshire in any other community.

Secondly, this site has its own water treatment plant from the mill which is part of

PJPD's assets that it purchased. The site owns and has easements for a penstock and

water intake structure which is currently operational with a withdrawal permit on the

Page 5 of 47

Androscoggin River on the land north and adjacent to this site. To this extent, the site

has two (2) sources of adequate water for the construction of this generation plant. This

is highly unusual and contributes to the proper siting of this plant.

4. This site has sewer. Equally as important, but to a lesser degree in volume,

approximately 250,000 gallons per day of sewer water will be discharged to the City of

Berlin's sewer system. The City of Berlin has adequate capacity to handle this sewer

discharge and is in the process of upgrading its sewer plant to make sure that it can

continuously handle this and the balance of the City's wastewater discharge. The ability

to provide this sewer capacity by the City contributes to the site being correctly located in

the City of Berlin.

5. The site is located adjacent to the 115,000 KV Coos Loop. Through a very short system

upgrade to the Gobal Street substation in the City of Berlin, the Laidlaw plant can

connect to the 115,000 KV system, not the local 34,000 KV system. This provides a

direct connection to the Coos Loop and contributes to the proper location of the site.

6. The Coos Loop, which the plant is being connected to, is in continuous upgrade at

Whitefield and Littleton. To this extent, the electricity can be moved down state through

both the Public Service system, and cross over into the National Grid system at Littleton

and the Moore substation. This provides a direct link to the Massachusetts grid system, if

Page 6 of 47

desired.

7. A review of the detailed Public Service system map (Exhibit 1, found at

www.puc.nh.gov/TransmissionCommission.htm figure 1 in the KEMA, Inc. report on

transmission cost allocations) of all transmission lines from 34,000 volt up clearly

indicates that there are no major fossil fuel generating plants in the North Country. This

plant provides a significant increase in the baseload generating capability of the region

and provides capacity at the northern end of the Public Service system. This plant will be

able to provide voltage control, frequency control, kilovar input, and other desirable

electric generation products to the Public Service system providing greater reliability in

the entire region and reducing the overall risk of outage north of the Beebe River

substation when and if the Moore and Comerford stations are offline. This adds to the

desirability of the site in Berlin and provides additional benefits to the rate payers of

Public Service Company of New Hampshire. Furthermore, PSNH operates the northern

franchise of some 37 communities and unincorporated places which this plant will

generate into (see Exhibit 2, Franchise Map, www.puc.nh.gov.)

8. With the Berlin site on the east side of the 230,000 volt National Grid connection at

Moore, the Laidlaw plant is capable of connecting directly to the New England regional

grid through National Grid. There is no other place in the State of New Hampshire where

this connection can be logically made, enhanced, or upgraded than off of the Coos Loop,

which includes Berlin, or building a new substation at the Dunbarton/Merrimack tie at the

town line border of the Town of Bow and Dunbarton. Any other connection would

require a cut tap and a new 230,000 volt substation or switchyard to be built on the

Docket: DE 10-195 George E. Sansoucy, P.E., LLC existing National Grid 230,000. This enhances the siting of the Laidlaw plant in the City

of Berlin.

9. Power from the Laidlaw plant can be routed and backfed into the Littleton Water and

Light electric distribution system, the 115 KV to North Woodstock and Beebe River, thus

over to Tamworth and Conway, throughout the Coos Loop region, and west into Vermont

through the VELCO tap at Littleton and the VELCO tap at Commerford. These VELCO

taps based at the Littleton substation and at the Commerford substation tie directly to the

Coos Loop and Berlin. Should there be a need or desire to either expand or move power

into the State of Vermont from the Berlin site, this power can be easily transferred. This

enhances the correct siting of the Laidlaw plant in the City of Berlin.

10. The City of Berlin is located at the intersection of the Rt. 2 and Rt. 16 corridor in the

State of New Hampshire. The Rt. 2 and Rt. 16 corridor enables the Berlin plant to access

the wood basket in western Maine, northwestern Maine, northern New Hampshire,

eastern Maine through Rumford and on toward Augusta, the entire western New

Hampshire wood basket, north and south on Interstate 91 and easy access to the

Northeast Kingdom of Vermont. A developer would be hard pressed in the State of New

Hampshire to find a better site with multi-directional access to a wide variety of wood

baskets. Further, this Laidlaw plant is properly sited in that it is on the north side of the

White Mountains, above the three plants located in Alexandria, Springfield, and

Bridgewater, respectively, which are primarily accessed from Interstates 89 and 93 south

Page 8 of 47

of the White Mountains.

11. The fact that the plant owns a water treatment plant with an operating capacity of close to

50,000,000 gallons per day if necessary, a penstock, and a water intake structure on the

Androscoggin River substantially enhances the appropriateness of siting in the City of

Berlin and enables the plant to consider long term plans for expansion, co-location, or

subsequent relief of the City of Berlin's water treatment facility, if necessary.

12. The site is adjacent to the Mt. Carberry landfill. The Mt. Carberry landfill, originally

developed by James River Paper and subsequent ownership by Crown Vantage and

American Tissue, has been transferred to the Androscoggin Valley Regional Refuse

Disposal District and is operated as a super regional landfill in northern New Hampshire.

It has become the second largest operating landfill in the state and as such provides an

excellent opportunity for the plant to cost effectively dispose of its ash, should it choose

to do so, with a minimal amount of trucking. This enhances the proper location of the

site being in the City of Berlin.

13. In the same vein, the North Country is one of the remaining agricultural areas of the state,

especially the Connecticut River Valley, from Colebrook south. This enables the

company to work with and consider utilizing the ash for agricultural fertilizer with a

ready need in the immediate area. This too enhances the proper location of the site being

in the City of Berlin.

Docket: DE 10-195

14. The City of Berlin and the surrounding area has a highly skilled yet reasonably priced

labor force. The labor force has been trained in heavy machinery operation, maintenance,

building maintenance, and a number of local residents were boiler operators in the mill.

The Laidlaw plant is correctly sited in the City of Berlin to take advantage of and provide

employment opportunities to an already skilled labor force in the immediate area.

15. This plant is correctly sited in the City of Berlin in part because it is generally well

received in a region receptive to a continuation of the forest products industry and forest

management. This plant generally has a high acceptance level among municipal and

regional public officials, business leaders, and the local population.

16. The plant is properly sited in part because of its potential opportunity to utilize rail which

goes right through the City of Berlin adjacent to the Laidlaw plant. This mill property at

one time was served with a rail spur. The rail easements still exist through the property,

the rail bridges still exist, and should rail service for both the input of biomass fuels and

the export of either product, ash, or byproducts for additional uses become cost effective

or desirable, the plant is correctly sited to take advantage of rail. Few, if any, wood

plants in the State of New Hampshire have the opportunity to use rail, enhancing the

correctness of siting this plant in the City of Berlin.

17. This plant is correctly sited due in part to a community receptive to the development of a

PILOT agreement (Payment In Lieu of Taxes). A PILOT agreement is beneficial to the

rate payers in that it helps stabilize the price of the electricity from this plant. The City of

Page 10 of 47

Berlin is receptive to the development, negotiation, and consummation of a long term

PILOT agreement to coincide with the term of the PPA. The benefit of a PILOT is

directly related to this plant being correctly sited in the City of Berlin and the City's

desire to obtain certainty and stability in its tax payments as well as offering stability in

the tax cost for the plant.

18. The siting of this plant in the City of Berlin may directly impact the rate payers of Public

Service by helping to reduce or eliminate the need for the Lost Nation combustion turbine

peaking jets located in Groveton, New Hampshire on the same 115,000 KV line as the

Laidlaw plant develops a history providing high and substantial capacity factors and

availability factors for the generation of electricity in this region.

19. This plant will provide enhanced industrial activity which benefits Public Service's rate

payers by the direct use of more electricity in the region as a result of an uptick in

industrial activity. The Berlin / Gorham region has very little industrial land, being

valley communities along river corridors. The industrial land it does have, namely the

Laidlaw site and the site above Laidlaw, the Rt. 110 corridor, and the Berlin Industrial

Park is adequately served and ready for substantial additional industrial activity which

will use more electricity, thereby reducing cost to all rate payers in the state, all else

being equal. These areas, including Gorham, are served by four (4) sewer plants and

three (3) water plants. The development of the Laidlaw plant will be able to provide

additional steam and heat for enhanced industrial development and activity in the area.

Docket: DE 10-195 George E. Sansoucy, P.E., LLC Any additional activity which produces greater use and sales of electricity by Public

Service, the franchisee in this region, directly benefits all rate payers of Public Service.

20. The rate payers of Public Service are benefited by the contracting and consummation of

Class 1 RECs which Public Service is required to purchase under New Hampshire law

and the rate payers are required to pay for under New Hampshire law. To the extent that

there is a substantial capital savings related to the existing infrastructure, the ability to tap

into water and sewer infrastructure, electric infrastructure, labor, landfill, road systems,

agricultural reuse of ash, moderate tax payments, and potentially enhancing additional

industrial activity, the Class 1 RECs required to be purchased are likely to be less

expensive than otherwise would be required of the rate payers of Public Service, thereby

enhancing the proper siting of this plant in the City of Berlin.

Q. The Staff's testimony is silent on capacity. Do you believe that is appropriate?

A. No. Capacity is a key component of this contract and a benefit to the rate payers.

Q. Why?

A. Wood fired power plants have a good track record for providing reliable capacity at very high

capacity factors. Even though wood plants are solid fueled, compared to coal, they have far less

erosion in the ash, less boiler wear and tube wear and longer run times between boiler shutdowns

and repairs. Wood easily can provide 80% - 90% capacity factors year-in and year-out, and do

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 12 of 47

not have substantial de-rates in the summer as compared to gas combined cycle plants. The

capacity factors of wood fired power plants compete directly with coal fired power plants in the

New England market place.

As a direct result of this unusual recession, the market price of capacity in the New England ISO

is suppressed at this point in time. There is an over abundance of generation capability in the

region. The New England region has summer capability of 30,142 MW of generation capacity

and an approximate import tie benefit of 1,860 MW for a total of approximately 32,000 MW.

The peak generation required for the New England ISO system for the 2010 peak of 27,100 MW

in July of 2010 is 26,083 MW and a net import making up the difference of 1,017 MW.

Utilizing a 15% reserve capacity, the total amount of net generation and reserves necessary to

meet the New England needs are 31,165 MW. On the surface, with gross import capabilities of

3,000 MW from all forms of import including Quebec, New Brunswick, Connecticut, New York,

and Long Island, it would appear that there are adequate resources at this time. There is an 18%

reserve margin based on the 2010 peak if one includes the export capabilities. It should be noted

that not all export is firm. Hydro Quebec 2 imports approximately 1,400 MW. During the July

peak, the maximum imports were only 1,889 MW.

In order to maintain a 15% reserve margin for the entire region, the 33,042 MW (ISO NE, 1/1/11

SCC Report) of regional summer capacity and import capacity will be consumed when the peak

hits 28,732 MW of demand. Assuming a 1% compound annual growth rate (CAGR) coming out

of the current recession (it should be noted that a 28,130 MW peak capacity was experienced in

2006 and supplemented only with 1,879 MW of imports) and at a 15% reserve margin, New

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 13 of 47

England will hit its reserve limits in 2014 (See Exhibit 5), at which point new capacity is going

to have to be added. It should be noted that the ISO is considering a peak of 31,885 MW of

demand by 2016. Any new capacity that must be built and added to the system in 2016 will cost

approximately \$150 per megawatt year or \$12.50 per kilowatt month. This will be the

replacement cost in current dollars, not in future dollars, of a combustion turbine. The addition

of this capacity adds to a long, lingering list of peaking facilities representing the least expensive

capacity additions and does not add any new base loaded capacity to the system. New base

loaded capacity in the form of a combined cycle gas plant will cost at least \$225 per kilowatt

year, or at least \$18.75 per kilowatt month. This compares to the Laidlaw PPA of \$4.25/KW

month or \$78/KW year in capacity cost, a significant savings to the rate payers of PSNH.

The more troubling implication for capacity pricing is that more likely than not excess capacity

and the subsequent depression of the market price of capacity will end and end abruptly. More

specifically, there are 7,729 MW of existing total ISO capability of 33,976 MW that is

vulnerable to being taken off line and permanently closed in the next ten (10) to twenty (20)

years. These are generally older oil fired plants which do not compete with gas fired combined

cycle units.

Exhibit 3 is a listing of the existing plants which are included in the capacity reserves for New

England at this time which are likely vulnerable to closure. Exhibit 4 and 4-A shows a graph of

the age of these plants also, which will also dictate a point of closure. Exhibit 5 shows the

capacity demand in New England at a 1% growth rate, the shortfall of capacity without closures,

and the capacity needed at a 2.5% closure rate, or as plants age to 70 years old. Very few plants

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 14 of 47

in the U.S. have operated beyond seventy (70) years. The primary technology cycles for electric

generation have been 5 years.

We know at this time that a number of plants are considering closure or are being put into cold

storage. These announcements include Canal at 1,226 MW, Mystic at 7,578 MW, Salem Harbor

at 745 MW coal and oil closure, Vermont Yankee Nuclear at 620 MW, and the relicensing of

Pilgrim Nuclear at 677 MW. This immediately takes 3,846 MW out of the capacity mix in a

very short period of time in addition to plants like South Boston and Montaup which have

already been closed. For the remaining capacity in place, it is undetermined how much longer

the owners of a number of the oil fired plants will go before it becomes essential to close the oil

plants. Cheap capacity prices will close these plants along with environmental constraints.

Current announcements of closure create a capacity deficit at this time. Any other single plant

closing will exacerbate the capacity problem, reserves will drop, and the construction of new

capacity will have to be induced through market prices or regulatory requirements.

It is further important to note the overwhelming majority of the capacity that is vulnerable are the

existing oil plants, some of the last remaining oil plants in the United States. If any of these oil

plants are called upon to operate longer than very short peaking periods, the cost implications for

the rate payers will be felt in the price of electricity and the fuel cost recovery. At \$100 per

barrel for oil, the bulk of these oil plants will have to generate at between \$.18 and \$.20 per

kilowatt hour above and beyond capacity payments. At Wyman 4 for example in Yarmouth,

ME, operating at a 10% capacity factor on oil at its rated capacity of 600 MW, the plant will

generate approximately the same kilowatts as the Berlin Laidlaw wood fired generation plant,

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

Page 15 of 47

approximately 525,000,000 kilowatt hours per year. At a cost of \$.18 a kilowatt, it will cost

approximately \$95,000,000 to generate replacement electricity, \$20,000,000 more than Berlin.

Berlin Laidlaw's all-in, all-done price including REC's in the PPA of approximately \$.14 per

kilowatt is highly competitive against likely intermediate generation capacity requirements of

the oil fleet in New England. The future price of oil would have to drop to \$60 per barrel to

compete with Laidlaw.

While it is not likely that all 7,729 MW of capacity will be taken off line in the next twenty-three

(23) years, it is likely that consistent and continuous closures will occur as permit expirations and

re-permitting requirements make it impossible to financially continue to operate these existing

facilities. Very few fossil plants in the U.S. have operated beyond 70 years. Such examples as

the oil and gas fired South Boston Station, the Montaup Station in Somerset, MA, and the

announced closure of Salem Harbor are examples of a trend that has been long in coming, but

nevertheless appears to have arrived in the closure of the less efficient, more expensive and

polluting power plants in New England. Closures will be driven in part by new pollution control

requirements, permit requirements, cooling tower and cooling water requirements, and operating

costs. Plant closures pose a real potential risk of leaving the New England ISO in a capacity

shortfall. It is the City of Berlin's belief that the current price suppression in the capacity market

is short lived and anticipated to reverse. The Laidlaw contract locks in capacity values and costs

starting at \$4.25 per kilowatt month, rising to \$6.50 per kilowatt month in the year 2033. These

values are below likely market values, are cost effective, and highly beneficial to Public Service

and the rate payers of the State of New Hampshire. Utilizing the Ventyx nominal dollar Fall

2010 capacity projections (Exhibit?) relied upon in this testimony, especially when considering

Docket: DE 10-195

upcoming plant closures, the 2033 capacity prices in New England are anticipated to be \$154 per

kilowatt year. The actual capacity payments in the PPA for 2033 are \$78 per kilowatt year, or

50% of the Ventyx projection, offering the rate payers of Public Service a good deal at half price.

The anticipated annual capacity price savings is \$5,130,000 per year by 2033.

Q. Do you believe the Staff and OCA have overlooked this very important component of the

benefits of the PPA and has prematurely passed judgment on the PPA's public interest?

A. Yes, I believe that Staff and OCA have significantly underestimated the upcoming capacity

shortage. The inconclusive testimony of Staff found on Page 29, Line 4 has avoided any

discussion of capacity and the benefit this PPA provides, including the fact that the PPA fixes the

price of capacity. This PPA absorbs all inflationary, construction, and operating costs risks of

creating and maintaining this capacity addition over the next twenty (20) years. This capacity

portion of the PPA is a direct benefit to the PSNH rate payers.

Q. Do you believe that the Staff and OCA have adequately considered and addressed the

energy component of the Laidlaw contract?

A. No.

Q. What areas in the energy pricing do you think the Commission should consider that Staff

and OCA have not?

Docket: DE 10-195

Page 17 of 47

A. Staff and OCA have only considered the short-term energy market as it exists today in what is

called "The Great Recession". This is shortsighted and serves no useful purpose in the analysis

and review of Laidlaw Berlin Biopower's PPA, the creation of new Class I RECs and the

permanent establishment of additional fuel diversity for the State of New Hampshire. There are

a number of areas of concern with Staff and OCA's testimony that are not adequately considered.

There is no question that the economy is in a recession, that demand has been down for

electricity, that there is a glut of natural gas, and prices are suppressed. The Commission should

not make its decision related to the Berlin PPA and the creation of new Class I RECs on short-

term technical analysis and metrics. The Commission, while being mindful of the short-term

situation, should recognize that the Laidlaw plant will not be constructed and fully commissioned

until 2013/2014, some three years from now. Furthermore, compliance with State law 362-F by

PSNH is not going to occur if every analysis and every proposal brought to the Commission is

scrutinized on short-term immediate technical considerations and price signals. The Commission

needs to consider the fundamental underlying prospects for the development of RECs, the

diversity of fuel necessary to create those RECs, the benefit to the ratepayers of the State of New

Hampshire, the underlying structural requirements of developers to finance the projects which

are creating the Class I RECs for PSNH as well as other load serving entities in the State of New

Hampshire. In the absence of solid fundamental analysis and long-term thinking, one of two

things will happen: either PSNH will pay the default price for not having enough Class I RECs,

which will cost the ratepayers, or PSNH will be forced to propose the construction of rate based

plants that it will own to provide the Class I RECs necessary to meet the law. If it is Staff's and

OCA's position that PSNH should construct the facilities necessary to produce Class I RECs as

Docket: DE 10-195

rate based facilities, or should pay the default price, Staff and OCA should send a clear signal to

the Commission and to the private sector not to spend its time, energy, and money searching for

prime opportunities to provide new Class I RECs.

Furthermore, relying on the suppression of short-term REC prices, in the infancy of this

program, from other developments in other states is short-sighted and risky. As the ramp up

occurs in the need for Class I RECs, the amount available will quickly hit the wall and the prices

will substantially advance. The underlying fundamentals of building and creating new Class I

facilities does not change whether or not it's in New Hampshire, Massachusetts, Maine,

Vermont, Connecticut, or Rhode Island. It is far less likely that any new biomass wood-fired

facility can be constructed anywhere in New England to produce 67.5 MW of Class I capacity

and RECs as cost effectively as the redevelopment of the chemical recovery boiler in the City of

Berlin, New Hampshire. There are already near permitted 50 MW wood plants in New England

at sites located in good wood baskets, good transportation corridors on good sites. They are

greenfield developments and have not yet been able to secure any type of long-term PPA. The

reason is not the ability of the developers, the site or the concept. The reason is the high cost of

developing a greenfield site at this time.

Based on a number of fundamental analyses, it is more likely than not that the energy prices

proposed in the Laidlaw Berlin Biopower PPA and contract will be a good deal for the

ratepayers. It is less likely that short-term views will prevail, and it is more likely that the long-

term energy price certainty in the PPA will be competitive with the market in the future. It is far

Page 19 of 47

Docket: DE 10-195

less likely that relying on the short-term market for 20 years, as proposed by OCA and Staff, will

be beneficial and energy prices are going to reverse and become volatile.

Q. Please describe a number of the fundamental analyses you refer to that make it more likely

than not that OCA's and Staff's position will be wrong and the PSNH's negotiated energy

prices will be a good opportunity for the State and for the ratepayers.

A. There are a number of reasons why it is more likely that energy prices will escalate. By way of

a framework and base case, it can be seen from the graph in Exhibit 6, ISO Summary, that

system peak capacity peaked in 2006 at 28,130 MW. It fell back 11% in 2009 to a 25,100 MW

system-wide peak load. The load has recovered in 2010 to a system peak of 27,100 MW, or a

recovery of 8% percentage points. The 2010 system peak is only 3.7 percentage points off the

all time 2006 peak. The net energy used peaked in the last decade in 2005 at 136,355 GWh. Its

low in 2009 only dropped to 126,838 GWh. The energy consumption dropped 7% while the

capacity dropped 11%. Part of this difference is directly related to the confluence of the Great

Recession, but also the real and significant incremental gains in energy efficiency, demand side

management and load reduction initiated by the various programs throughout New England. To

a large degree, New England made better use of the capacity it has to produce more energy per

MW of system peak load. 2010 is shaping up (see Exhibit 7) to consume 130,000 GWh in the

region, or a recovery back to approximately within 5.0% of the peak energy usage in 2005.

In 2010, for eleven months, saw the continued utilization of imports and exports over the

regional and international electric ties. While substantial electrical capacity exists in New

Docket: DE 10-195

England, approximately 7.4% of the total energy consumed came in over external ties. As the

market tightens and as the recession begins to recede, and with the lack of new power plants

having been constructed around New England, it is more likely than not that the availability of

power from the external ties will also tighten, placing more pressure on the existing capacity and

fuel infrastructure in New England to produce its own electricity. As demonstrated in Exhibit 5,

capacity may likely constrain by 7,569 MW by 2034 at a 1% growth rate from existing recession

lows. The only likely way to inhibit this growth rate and impending capacity constraint is to

substantially ramp up conservation, efficiency, and load management to hold the current capacity

and energy consumption flat, an unlikely scenario inhibiting the growth of the region, or prepare

for the construction of new power plants and the expansion of external ties with our neighbors.

At a time there are some 7,750 MW of internal New England capacity is in jeopardy of being

closed, mothballed, decommissioned and/or torn down, we are headed for a capacity constraint

utilizing the entire existing fleet. Renewable energy projects cannot be permitted, designed,

constructed and commissioned fast enough to begin to make a substantial dent in the loss of

greater than 7,000 MW and the mitigation of the pending capacity constraint crossover. The

State Commissions and the utilities can and likely will refine dispatch, load flow and

contingency parameters through Smart Grid technology to reduce the reserve requirements from

15% downward to help alleviate the coming constraints. While these activities will be positive

efficiencies to the transmission and distribution system, their percentages are limited and may

only move the problem one to three years ahead. None of these conditions will assist in averting

some level of browning in the event of a major spike in summer temperatures coupled with the

loss of one or two significant contingencies. These conditions set the stage for escalating and

Docket: DE 10-195

spiking energy prices, volatility and excess reliance upon combustion turbines, oil-fired

generation plants, and other high-cost energy measures. It is more prudent than not to reject

Staff's and OCA's reliance on current recessionary price structures and their unwillingness to

offer forecasts for the Commission's consideration of fundamental and structural changes which

could or are likely to occur in the energy market in New England. The City of Berlin offers that

the energy price forecast in the Laidlaw PPA is a good bet and good deal for the ratepayers under

a number of scenarios which could or are likely to occur over the next 20 years in the energy

pricing structure of electricity in New England. Fixed known prices will help reduce the

volatility of PSNH's default power pricing structure for its ratepayers and help in predicting its

cost structure.

Q. Do you believe there will be considerable volatility in the price of electricity in the future?

A. Yes. The price of electricity is being driven by the price of natural gas in New England at this

time. While oil used to drive the price of electricity, gas has taken over as the marginal fuel. In

2009, of the total generation of 119,437 GWh, 12% was generated with coal, less than 1%

generated with oil only, 32% was generated from gas, and another 10% with gas oil units

(Exhibit 7). In 2002 in New England, gas had eclipsed nuclear as the single largest component

of electric generation in New England and has remained so. It is interesting to note that

renewables remain flat for the entire decade at approximately 7,500 GWh of electricity

generated. The Laidlaw plant is likely to add at least 5% to 6% total renewable energy to the

New England grid when operating at full capacity.

Docket: DE 10-195

There is no question that, at this time, the electricity price is severely suppressed due to the

collapse of natural gas prices. Natural gas prices have collapsed in New England due to three

factors: the first is a collapse of demand, the second is a transportation stabilization and

equalization around the United States with the commissioning of the Rockies Express Pipeline

bringing western gas into the central part of the United States, pushing more available gas into

New England, and third the Marcellus Shale finds in Appalachia, Pennsylvania, and New York.

As a result of the shale gas (unconventional gas) finds in the region, natural gas prices have

disconnected from the price of oil and reflect their own market fundamentals. Both OCA, Staff,

the IPPs, and Concord Steam make no attempt to study an offer to the Commission a review and

forecast of the fundamentals which will affect the price of gas, and therefore the price of

electricity, in New England. Gas has been and continues to be a volatile fuel source and its

volatility rivals that of the volatility of oil over the decades. Exhibit 8 shows the price of gas and

oil over the last 20 years, with a volatility of over 500%. Wood, on the other hand, exhibits very

low volatility in comparison to the volatility of fossil fuels. Wood has experienced a volatility of

approximately 50% over the last 15 years (\$18 to \$28 per ton overage) and is even less volatile

than the price of coal and nuclear fuel. The Commission should consider the premium that has to

be paid for the construction of a new wood-fired power plant as an investment in lower volatility

on the electric price in PSNH's default service for the ratepayers of the State of New Hampshire.

This is a demonstrated fundamental of the fossil fuel pricing structure which has been ignored by

OCA, Staff, and the other intervenors.

There is no question that the United States is entering a new paradigm where indigenous natural

gas will create greater energy independence, revenue, and efficiency throughout the United

Page 23 of 47

Docket: DE 10-195

States through the exploration and discovery of deep, imbedded shale gas in a number of locations. With the advent of deep drilling, it was learned that substantial gas reserves exist in tight formations in shale at extremely deep levels. Vertical drilling is incapable of producing enough gas from these locations, as the migration of gas under intense heat and pressure could only migrate to the surface walls of the well and then out of the well in limited quantities which were not cost effective to warrant the technology and expense of deep rock drilling. With the advent of directional and horizontal drilling, which essentially turns the drill bit gradually into a 90° arc and drills along the shale seem, significantly more gas producing shale is exposed to the drill well. This too is still not sufficient to produce enough gas through the very slow porosity of the high density shale to enable enough gas to pass to make it worthwhile. With the additional development of high technology hydraulic fracturing (hydrofracing), where water and chemicals are pumped into the horizontal well at extremely high pressures, the liquid pressure literally crushes the earth around the well, releasing far more trapped gas. The entire process is expensive but effective. Substantial quantities of gas are released from the hydrofraced well and brought to the surface for treatment, refining and shipment for sale. Through the last five years a full blown land and gold rush has occurred in the Marcellus Shale areas with substantial drilling that has created a glut of gas. While effective, the hydrofracing procedures raise significant environmental concerns for contamination and pollution as a result of the chemicals and the disruption of the earth. The State of New York instituted a moratorium on any horizontal drilling and hydrofracing in its shale territories until such time that environmental considerations can be fully studied and, if possible, regulations be developed. Other states are looking at regulations and environmental considerations related to hydrofracing. It is likely that tougher

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

regulations, especially in light of the oil spill in the Gulf, will be enacted towards hydrofracing,

but hydrofracing altogether will not be banned and substantial quantities of gas will be available

to the continental United States for use by others as well as New England. What is still unclear

are the true depletion rates of these wells. It is anticipated, due to the levels of gas received from

the fraced well, that depletion rates are going to be high and quick.

Another significant area of concern that is currently occurring which will raise gas prices is the

lack of drilling activity at this time in the Marcellus Shale region due to both price of gas and

potential lease restrictions. The existing low price is in part a bubble. It is a bubble created by

leases which required performance or the lease was lost. Wells were drilled and extracted in

order to maintain lease conditions or lose the leases. More and more wells are shut in and less

and less wells are being drilled as lease conditions are being renegotiated throughout the United

States. Discussions with a lawyer for gas exploration companies has indicated that they are

quietly renegotiating leases to extend terms, change terms, or walk away so as not to be forced to

drill in such a low priced environment. It is more likely than not that a floor has been found in

natural gas pricing. As of January 7, 2011, working rotary oil and gas drill rigs were up six rigs

for the week, and more importantly up 480 rigs for the year, or a 40% increase in drilling rigs for

2010, but the number of rigs drilling for natural gas nation-wide was down five from the

previous week. The largest counts were in the Rockies, Oklahoma, Texas, Wyoming, and North

Dakota. Pennsylvania, the area of Marcellus Shale shipped into New England, was unchanged

for the week, and conventional gas regions, such as Louisiana which ship into New England, are

down significantly in rig numbers. Storage of natural gas is off slightly by the end of 2010, but a

surplus of approximately 6% higher than the previous year. A more important figure is the 914

gas rigs drilling for natural gas in the continental United States and Alaska as of January 7, 2011.

Docket: DE 10-195

That number is down 43% from 1,606 drill rigs for natural gas only as of its peak on 9/12/2008.

Substantial reduction in gas drilling rigs in the United States has to be taken into account in any

fundamental analysis of the direction of gas and therefore electric prices in New England and is

fully ignored by Staff and OCA. It takes time, money, permits, leases, approvals, and

mobilization to restart substantial drilling programs in any region. New drilling programs will

inevitably occur if price signals to the natural gas industry are sufficient to cover the drilling

costs, all expenses, and a profit. Horizontal drilling with hydrofracing is not cheap. It is more

likely than not that substantial depletion rates will occur over the next three to five years for

natural gas coming into New England from the Marcellus Shale deposits and wells. Capped

wells will be fraced and opened, but substantial drilling activity must begin with a time delay

before considerable volumes of gas become available and prices stabilize. The stage is set for

price escalation of natural gas into New England. It is important to note that prices may be

somewhat moderated by the more complex and changing dynamics of the revenue stream from

gas drilling. Where wet gas is encountered, non-condensable gas liquids, namely butane,

propane, and ethane, become part of the mix. They are substantial in the pricing of gas in certain

parts of the south and Texas, but increase the volatility of the well costs and ultimately the

natural gas pricing in the northeast because of the lack of infrastructure to move these products to

market. Therefore price quotations at Henry Hub in Louisiana may be substantially affected by

gas liquids and the market for gas liquids, but those savings will not be translated into reduced

gas prices in the northeast. The gas industry may find it necessary to enact a new hub in the

northeast for the pricing of natural gas under different circumstances than gases priced in the

southern parts of the United States.

Docket: DE 10-195

To summarize, macro issues occurring with gas that will affect the price in an upward trend,

thereby increasing the price of electricity in New England, are as follows:

• "Production levels will begin to decline: In 2011, producers will become more sensitive

to lower price levels because of fewer hedge positions, the expiration of land leases,

reduced capital infusion from foreign investors, and growing concerns over an

oversupply of NGLs."1

• "Demand levels will begin to rise: If the second round of quantitative easing proposed by

the Federal Reserve stimulates economic recovery, natural gas prices will begin to

respond to the anticipation of renewed demand, particularly from the electric generation

and industrial sectors."2

• "Speculators will begin to shift their market position: The speculative sector has

continued to retain a very large net-short position, which is indicative of their belief that

more price downside exists. By mid-2011, if production levels are declining and demand

levels are rising, this sector may shift from being a more aggressive seller to a more

aggressive buyer in the marketplace, and buying will push natural gas prices higher."3

There are additional long-term fundamental issues at play in the cost of natural gas in the New

England region which affect the long-term supply and demand and ultimately price of natural gas

used to generate electricity. Any increase in natural gas pricing is a direct increase in electric

pricing. Some of these fundamental directions and/or changes are as follows:

¹ Valerie Wood, "Natural Gas Price Outlook, Improve Your Pricing Strategy and Profitability," <u>Energy Solutions</u>

December 2010: 5.

² Ibid.

³ Ibid.

Docket: DE 10-195

Page 27 of 47

George E. Sansoucy, P.E., LLC

January 2011

"Increased reliance on unconventional shale gas exposes the nation to longer-term risk

because of less natural gas supply source diversification."4

"Increased onshore production could kill plans for an Alaskan or Canadian pipeline and

increase the potential for forced majeure situations caused by well freeze offs."5

"The natural gas drilling rig is projected to decline by 50-100 rigs by the end of 2011, and

this decline will impact production levels because the most inefficient drilling rigs have

already been idled."6

"NGLs improve natural gas economics, but the NGL market will eventually deal with

concerns over the potential for excess supplies due to a lack of infrastructure and

processing facilities."7

"Investigations into the environmental impacts of horizontal drilling and hydraulic

fracturing, which are technologies used for shale production, are ongoing and the

potential for increased regulations remains real."8

"Natural gas storage inventories are likely to be at record levels on April 1, 2011 and this

could set the stage for another new record high at the start of the 2011-2012 winter

heating season on November 1, 2011."9

"Numerous Canadian and U.S. liquefied natural gas (LNG) import facilities are

underutilized. In 2011, more LNG owners are expected to propose plans to convert these

Page 28 of 47

⁴ Valerie Wood, "Natural Gas Price Outlook, Improve Your Pricing Strategy and Profitability," <u>Energy Solutions</u> December 2010: 6.

⁵ Ibid.

⁶ Ibid.

⁷ Ibid.

⁸ Ibid.

⁹ Ibid.

Docket: DE 10-195

facilities into export facilities. If the U.S. and Canada become natural gas exporters, it

would mark a new era in the natural gas industry."10

"The second round of quantitative easing by the federal reserve (QE2) is designed to

jumpstart the economy. However, these actions could have the opposite impact as it

could devalue the U.S. Dollar and push crude oil commodity prices over \$100 per barrel,

which in turn could hinder consumer spending."11

• "Prolific growth in natural gas supplies is expected to result in new demand surfacing

from the electric power sector. An increased reliance on natural gas-fired electric

generation will likely lead to increased electric price volatility."12

• "Expansion of pipeline infrastructure has caused pipeline transportation or basis to

change dramatically from historical price levels and delivery costs throughout the nation

have been somewhat equalized from coast-to-coast."13

• Technical indicators point to an early winter or mid-winter price rally to be followed by

another price decline, which will take natural gas prices toward a seasonal first quarter

low. Also, history indicates that major price rallies occur 2-1/2 to 3 years apart, with the

most recent rallies occurring in 2005 and 2008."14

The natural gas prices are expected to resume to \$5 to \$6 per MMBTU price range by 2012. It is

more likely than not that as the nation pulls out of the Great Recession, there will be a continued

upward trend for natural gas pricing throughout the nation for both technical and fundamental

reasons that will escalate the short-term, day-to-day price of electricity in New England.

10 Ibid.

11 Ibid.

12 Ibid.

13 Ibid.

¹⁴ Ibid

101d.

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 29 of 47

In order to estimate the price of electricity, we used the Ventyx forecasted real market clearing

prices (which include the gas price forecast) for the northeast region in real dollars per MW,

inflated at 2.5% (Exhibit 9). Exhibit 9 also shows the energy payment from the proposed

contract and the 2010 price projection with carbon taxes. A side by side comparison of the

energy price forecast developed by Ventyx for the northeast-east region (the region the State of

New Hampshire is in), the Fall 2010 energy prices are compared in column blank in Exhibit

blank to the contract energy prices escalated at 2.5%. These include the average on peak and off

peak prices. These price projections include no carbon, no greenhouse gas legislation, and no

RGGI pricing. The Spring Ventyx Electricity and Fuel Price Outlook is prepared and included.

The Spring Outlook anticipated the cost of carbon legislation which has been shelved in

Congress at this time. The Spring 2010 prices are shown in Column B of Exhibit 9 by way of

comparison as to the affect that carbon will likely have on the price of electricity. It is important

to note that these forecasts assume an annual inflation index of 2.5%. Any change in inflation,

such as a greater escalation of market prices for natural gas, carbon, or the elements of electricity

generation, will raise these prices faster than the surrounding inflation and price forecasts. As

can be seen from Exhibit 9, under a variety of scenarios there is a crossover point where the

energy in the contract proposed for Laidlaw is less than the likely cost of electricity when

considering the fundamental drivers of price in New England and inflation. It is more likely than

not that during the course of this PPA, carbon legislation will resurface and be enacted by

Congress and have a substantial effect on the price of electricity in the region. A known contract

with Laidlaw Berlin Biopower could, under a carbon constrained environment, prove to be

extremely valuable and prescient by PSNH even though it is being negotiated at this time during

Docket: DE 10-195

a period of unprecedented de-escalation in electricity pricing. When capacity pricing is

combined with energy pricing from Exhibit 9, the difference in the contract cost versus the

forecast, capacity, and energy cost with and without carbon constraint is shown. This assumes

an 80% capacity factor of the power plant. This analysis, when compared with the REC pricing

added to the energy and capacity pricing of the Laidlaw contract, washes out the REC cost at

2025 without any consideration for carbon, but in a carbon constrained environment, the REC

cost is exceeded by the market by 2015. The Laidlaw contract is an excellent hedge for PSNH

against a carbon constrained electric pricing environment. It is certainly true that all forecasts

are forecasts, but fundamental occurrences in the industry, the fuel cycle, and the condition of the

existing fleet, coupled with the supply and demand requirements of New England, make it more

likely than not that the low existing market prices will not hold and that there will be price

escalation in electric energy products. It is also more likely coming out of this recession that this

escalation may well exceed inflation. The Commission should view Staff's and OCA's

testimonies as incomplete in their analysis and consider it short-term in nature only. The

Commission should review the contract in light of long-term fundamentals in its determination

as to whether or not it is in the public interest. The City of Berlin believes that the long-term

fundamentals driving the price of electricity give this contract a more likely than not probability

that it will be a good deal for the ratepayers of the State of New Hampshire.

Q. What is your opinion of the REC prices in the contract proposed in the PPA?

A. The renewable energy credits are, for all practical purposes, the premium that is being paid by

the ratepayers to comply with the requirements of RSA 362-F. Staff and OCA are utilizing a

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 31 of 47

short-term market approach to the analysis of a fundamentally different REC. Market RECs currently being bought and sold in the market are mostly from existing and modified existing power facilities in the region and represent, to a large degree, low hanging fruit in the New England electric generation system. The real test of cost comes with a Laidlaw proposal and the construction of permanent REC creating facilities. A Class I REC is essentially a new REC and must be created from new construction in order to meet the percentages of RECs required in the region. With Vermont objective being 20% by 2025, New Hampshire's law being 23.8% by 2025, Massachusetts at 15% by 2020, Rhode Island at 16% by 2020, Connecticut at 23% by 2020, Maine already at 30% and the potential to ship RECs out of New England and into other parts of the PJM and New York ISOs, a significant amount of new electric generation is going to be required to create Class I RECs. If the average arithmetic is 20% of the New England-wide load under RPS standards, this is going to require in general numbers approximately 30,000 GWh per year, or 30,000,000 MWh and 30,000,000 RECs on a regional basis. This is not going to be accomplished with wood alone. This would require approximately 4,300 MW of woodfired capacity, which cannot be built in New England. Even more startling is that this would require approximately 14,000 to 15,000 MW of wind-fired capacity to satisfy the region-wide REC requirements. It is highly improbable that 7,500 wind turbines can be permitted, approved, sited, built, and commissioned by 2025 to meet just the existing REC requirements. All forms of renewable resources and all forms of generation will participate in developing and satisfying the REC market in New England. If PSNH chose to do nothing, which to a large degree is the proposal from Staff and OCA, under the current market conditions PSNH could end up paying approximately \$90 per REC in default payments if it takes no action and the PUC approves no new PPAs for Class I RECs. If PSNH requires 16% Class I RECs by 2025 and had to pay the

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

default price on 1,280,000 RECs (16% x 800,000 GWh) of \$115,000,000, the consequences to

PSNH for not aggressively contracting for and proposing financeable contracts to REC suppliers

could easily add 1.5 cents per kw onto the default service price of electricity in the State of New

Hampshire. The Commission should look beyond the testimonies of Staff and OCA as being

shortsighted and incomplete in its analysis, and consider the actual facts of the contract proposed.

PSNH and Laidlaw have proposed to de-escalate the price of RECs from the current price of

RECs, and fix these prices at 50% of the future known price of RECs at a 2.5% inflation rate,

thereby splitting the market risk with the ratepayer and the developer. This is a good deal and a

good bet for the ratepayers of PSNH. If any carbon legislation should be enacted, which is likely

over the next 20 years, the Laidlaw contract is an even better deal for ratepayers, easily saving in

the order of \$300 million or more (see Exhibit 10) over the life of this contract.

Q. There is a buyout provision in the Laidlaw contract which allows for a reduction from fair

market value of the purchase of this plant by PSNH should they choose to in a buyout

option, if the market price of the electric products in this contract are below the contract

payments. What is your opinion of this provision?

A. This provision is a good provision which addresses the concerns that PSNH has had in the past

regarding the first round of IPP contracts and the residual value of those contracts if forecasts do

not advance in the general directions as anticipated. This allows PSNH to recoup value for its

ratepayers and offer to the company the opportunity to purchase this plant and put it into its

portfolio for the ratepayers in the future at a steep discount. The Commission should view this

Page 33 of 47

Docket: DE 10-195

provision and opportunity as unique at this time in contracting by PSNH and a positive attribute

of the Laidlaw project which may not be available or for which the company may not want from

other wood suppliers.

Q. Do you think PSNH should be allowed to purchase the full capacity of this facility at 67.5

MW as the current design proposal reflects?

A. Yes.

Q. Why?

A. Laidlaw should be allowed to sell the full capacity and PSNH should be allowed to buy the full

capacity of the plant as designed. This allows Laidlaw to focus on the operation of the plant, the

cost effective purchase of wood, and the efficient generation of electricity and RECs while not

focusing excessive effort and energy on marketing some other portion of the output of this plant.

It also helps to assure the financing of the plant so that there are RECs to be generated. Also,

this provides PSNH with a known block of RECs from a very high capacity factor facility with a

high likelihood and probability of success. This allows PSNH to move on to additional activities

related to the compliance with RSA 362-F and the contracting of additional REC generating

facilities.

Q. Do you believe that PSNH should be allowed to purchase all of the RECs generated from

the facility also?

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 34 of 47

A. Yes.

Q. Why?

PSNH should be allowed to purchase all the RECs purchased from this facility and Laidlaw

should be allowed to sell all the RECs to PSNH under this contract up to the contract capacity of

67.5 MW. In the short-term between now and 2015, RSA 362-F requirements are being phased

in while Laidlaw is constructing, commissioning and phasing in the operation of its power plant.

While some excess RECs may be generated in the early years, with appropriate banking for at

least two years it is likely PSNH will not find itself too far out of sync with its needed RECs and

the RECs being generated from this facility. Excess RECs can be marketed, banked for some

period of time, or put into an internal pool with Laidlaw to offset future RECs generated at

capacity factors above a target capacity factor which provides for financing. It would be

shortsighted for the Commission to place conditions on PSNH and this contract in the early years

that would otherwise jeopardize the financing and construction of this plant over whether or not

a certain number of RECs would be utilized in the early years of the project. It is more

beneficial for the parties to work together to determine a banking/credit mechanism that assures

the financing and provides flexibility in the future to PSNH.

Secondly, PSNH is paying 80% of the ACP in the first years to acquire the new RECs. This

provides some flexibility to PSNH to remarket RECs if it feels necessary and provide some

headspace in the pricing of those RECs in the future for PSNH.

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 35 of 47

Q. On page 10 of McCluskey's testimony, lines 10-15, Mr. McCluskey talks about an efficient

market where the REC price would always approach the uneconomical variable cost of

renewable generation. Do you agree with Mr. McCluskey's analysis on page 10?

A. No, I do not. This analysis is unsupported and does not recognize the different conditions for

each of the different types of renewable fuels and the construction of renewable generation plants

to satisfy the RPS requirements of the various states. Wood is a very efficient fuel to generate

electricity with. It has a low erosion potential, it provides for high capacity factors due to low

impact on the boiler facilities, and is relatively easy to handle as a fuel. What makes wood

uneconomic is the high capital cost of construction combined with the moderately high price of

fuel. The current price of RECs and the current price of wood fuel will not over stimulate

biomass investment and is necessary for only the very best plants to get constructed in New

England. REC prices and energy prices are going to have to rise further than they are in the

Laidlaw contract in order for new biomass electric generation plants to be built. There are near

permitted 50 MW plants waiting to be constructed which cannot be financed at prices similar to

the Laidlaw prices. Modern market principles indicate that wood-fired generation needs to be

constructed in large platform plants for maximum efficiency and a minimum of cost per MW.

Large wood plants will be constructed only in certain locations around existing wood baskets in

order to be economical. The REC prices for the construction of wood plants will not be market

driven, but will be driven by location, the capital cost of the plants themselves, and the desire for

Page 36 of 47

both fuel diversity, fossil fuel independence, and pollution control.

Docket: DE 10-195

DE 10-195

Q. While RECs are inexpensive today, do you believe that they will continue to be inexpensive?

A. No. As the LSEs ramp up in their REC requirements, they will quickly outstrip the ability to site,

permit, build, commission and operate new Class I facilities such as wind and wood. At such

time that demand outstrips supply, likely to occur between 2015 and 2020 as the ramp up occurs,

REC pricing could immediately go to the default penalty ceiling in at least the New Hampshire

program and provide PSNH with additional revenue/profit in the sale of RECs it has purchased

at a price less than the sale price. Profit made from RECs will be used to directly offset default

energy prices and costs to the ratepayers of the State of New Hampshire. Staff's and OCA's

testimonies and calculations only view the REC market in one direction, which is down, and do

not provide the Commission with any fundamental analysis of the potential price repercussions

of not constructing Laidlaw's plant and not having enough RECs to satisfy PSNH's need.

Q. On page 23 of Mr. McCluskey's testimony, lines 15-17, he raises doubts about the efficacy

of the project because PSNH did not bring other potential suppliers into the negotiations to

compete with Laidlaw. What is your opinion on Mr. McCluskey's statement herein?

A. I believe the Commission should ignore Mr. McCluskey's statement on page 23. This is not

what this docket is about. The Berlin facilities represent a unique opportunity for both Laidlaw

and PSNH and its ratepayers. As described earlier in my testimony about the appropriate siting

of the plant, this facility is existing, standing, has very little use on it, is well suited for

reconstruction, and is cost effective. There is nothing another supplier could add in the

negotiations to compete with Laidlaw to negotiate a contract with PSNH. There is nothing

Docket: DE 10-195

another supplier could bring into the system that equals or matches in the northern wood basket

in New Hampshire the location in the City of Berlin with the resources available to that site and

can be shovel-ready upon completion of this PUC docket. PSNH has, I would expect, the

opportunity to view existing permitted proposals elsewhere in New England for wood-fired

generation plants that are currently permitted and approved. Knowing the economics of those

plants proposed that are permitted, they cannot compete with the Laidlaw proposal. I assume

PSNH knows this and has taken the opportunity to reuse an asset in the State of New Hampshire

that is more cost effective than any other available shovel-ready asset in New England. This is

similar to the advantage PSNH has taken for the repowering of one of the Schiller units,

eliminating coal-fired generation in favor of wood at its existing facility both cost effectively and

in the best interest of the ratepayers. The City of Berlin strongly urges the Commission to

recognize the uniqueness of this proposal and disregard concerns of anti-competitiveness in the

negotiations.

Q. On page 24, lines 13-21, Mr. McCluskey tries to compare the Laidlaw and Lempster PPAs.

What is your opinion of that comparison?

A. The Commission should ignore the testimony of McCluskey on page 24 and should not compare

wind Class I RECs with wood Class I RECs. They are two completely different things. Wood is

a base loaded, solid fuel, sure technological method of generating electricity. It has a known

capital cost, a known operating cost, known staffing levels, and, above all, a known capacity

factor that provides for solid, high reliability capacity into the PSNH system, and it produces a

Class I RECs. Wind has no fuel cost, is a virgin technology that has not proven itself over time,

Page 38 of 47

Docket: DE 10-195

it is completely and totally unpredictable on a short-term basis as compared to, say, hydroelectric

facilities, and has a very low capacity factor and low capacity availability for the company.

Wind does not produce the electric products but consumes electric products, such as frequency

control and kilovars that are produced by a wood-fired generation plant. These are critical

distinctions that cannot be compared. Whatever price is paid for Lempster, the Laidlaw proposal

should be more expensive than Lempster as it produces a higher quality product than wind power

generation in the State of New Hampshire.

Q. On page 25 of Mr. McCluskey's testimony he talks about unsolicited offers for capacity and

RECs from other biomass projects, including Clean Power and Concord Steam. What is

your opinion of this?

A. The Commission should not try to compare the unsolicited offers of Clean Power Development,

Concord Steam, and the four existing biomass facilities. First and foremost, the existing biomass

facilities are not providing Class I RECs with the exception of a very small, incremental piece

offered by the capacity uprate of Alexandria. The existing four facilities are not offering Class I

RECs, and unless they make substantial investments in their facilities or significantly increase

the size and capacity of their existing facilities, they cannot offer Class I RECs required by

PSNH. The Commission should not try to compare the existing Class III REC generating

facilities with this proposal for Class I RECs. Each of the existing biomass facilities are capable

of making their own decisions if they wish to rebuild their facilities to qualify for Class I RECs.

Any rebuilding at this time is not permitted and is not shovel-ready for PSNH.

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

Page 39 of 47

As for Concord Steam, it is curious that the discussion for Concord Steam never involves

Concord Electric and Unitil but only PSNH. Sitting in the center of Concord's electric service

territory, it would seem logical that Concord Steam would be working directly with Concord

Electric to assist in satisfying Concord Electric's Class I REC requirements as an LDC. There is

no need for PSNH to be required to compare a Concord Steam proposal to a Laidlaw proposal.

Furthermore, these two proposals are completely different. It is inconceivable to imagine that

Concord Steam's proposal should and does compete with Laidlaw's proposal, especially the idea

of moving 750,000 tons of wood into the City of Concord for generation to PSNH on the

Concord Electric electric distribution system. The Concord Steam proposal is not shovel-ready,

is not of the same capacity, is entirely hemmed in on its site, and potentially subject to severe

water restrictions and curtailments.

For Clean Power Development, the CPD proposal is a different platform. It is a cogeneration

qualifying facility platform that, if constructed, would produce Class I RECs but its financial

platform and its cost is related to the ability to join with a credit worthy steam host in Berlin or

Gorham, New Hampshire in order to proceed with its construction. The Commission should

ignore any discussion of the CPD as a competitor of Laidlaw's in that it is not shovel-ready, it

did not have a contract, and its platform to create electricity required a steam host that filed

bankruptcy. There is no steam host for the CPD and therefore there is no CPD.

Q. On page 26, lines 9-14, Mr. McCluskey indicates that PSNH would pay Laidlaw

approximately \$285 million in above market energy costs over the 20-year term due to the

current rate recession pricing of natural gas. While you have testified on the likelihood

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 40 of 47

that the existing low prices for gas will not continue to prevail, there are high scenarios of

gas pricing that could severely impact the ratepayers of PSNH in the future whereby the

Laidlaw contract would produce a significant savings. What is an example of the high

scenario that Mr. McCluskey has not considered or advised the Commission?

A. High gas prices, high capacity prices, and a carbon tax will substantially increase the price of

electricity. This contract could easily save the rate payers at least \$300,000,000 (Exhibit 10) or

more over its life.

Q. On page 29 and 30 of the McCluskey testimony, Mr. McCluskey fails to study and address

the under market capacity prices and the benefit of this contract for PSNH and the

ratepayers regarding capacity. In addition to capacity, what other benefits has Mr.

McCluskey failed to consider from this plant for the ratepayers of PSNH?

A. In addition to capacity, RECs, and energy, this plant will provide a host of other electric

products and services which are important to PSNH. First and foremost, in addition to offering

what is likely to be significant below market capacity pricing, the property will be able to offer

frequency control, voltage control, the generation of kilovars, and greater stability of the North

Country transmission system. While not discussed, there are adequate resources proposed to

potentially be able to create black start capability of the northern grid with Laidlaw and the Lost

Nation turbine. These additional capacity oriented products are not anywhere discussed in the

McCluskey testimony, but the City of Berlin believes the Commission should give them

consideration in their deliberations.

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 41 of 47

Q. On page 33 of Mr. McCluskey's testimony, he talks about regulatory risks as well as other

plant risks. Do you agree with his testimony?

A. No.

Q. Do you believe the Commission should consider other additional areas of risk that Laidlaw

has assumed in considering its PPA which Mr. McCluskey has not advised the

Commission?

A. Yes.

Q. What are these?

A. First and foremost, the high debt to equity ratio does not automatically assume that there is no

risk. To the contrary, it assumes a limited equity availability due to a higher risk profile and a

higher rate of return on equity required to finance this project. Secondly, the interest rate on the

debt side will reflect a higher interest rate necessary to carry the debt under the risk profile due to

the lower amount of equity. The absolute opposite of Mr. McCluskey's concept that institutional

investors will view this as low risk, actually occurs in the development of these alternate power

energy facilities. At these types of debt to equity ratios, there is significant risk on both sides.

Laidlaw has not shifted to PSNH construction risk, has taken a 20-year fixed operation and

maintenance cost risk, which is a significant benefit to the ratepayers, has locked in REC prices,

Docket: DE 10-195

George E. Sansoucy, P.E., LLC

January 2011

Page 42 of 47

and under this contract may be subject to additional pollution control devices which it has to

construct on its own, creating additional long-term construction risk. Regulatory risk for

environmental controls and other types of operational requirements are not shed by Laidlaw to

PSNH. So Laidlaw has taken in risk in that it is not passing its fuel costs through dollar for

dollar but is pegged to the fuel cost at Schiller. The wood baskets between the northern and

southern parts of the state are different, and costs may be higher in the northern wood basket due

to competition from the pulp and paper industry. This fuel risk is not shed by Laidlaw and is

substantial.

Q. Do you believe the discount rates proposed by McCluskey on page 34 are reasonable?

A. No. The discount rates considered by McCluskey on page 34 are not correct for this type of

plant and the risk profile, and will ultimately kill the financing of this plant. Laidlaw will

literally need a 15% after tax rate of return on its equity for all costs of equity if this plant is

going to be constructed. The Commission should consider that Laidlaw has worked diligently to

secure 70% debt for this plant. At a 7.5% debt rate and 70% debt, the debt component of the

WACC will be 5.25% units. The after tax equity component of 15% times 30% is 4.5% units,

yielding a return on total capital of approximately 9.75%. This total cost of capital structured by

Laidlaw is well within the range of reasonableness for a private development which relieves

Page 43 of 47

PSNH of having to construct its own wood plant to create its own Class I RECs.

Q. On page 32, Mr. McCluskey discusses risk held by merchant plants versus utility plants.

Do you agree with his analysis and should the Commission consider an alternative view to

his testimony?

A. I disagree with Mr. McCluskey's testimony on page 32, lines 9-21. There is no secret that a PPA

is necessary in today's environment to finance this project and is necessary to create the RECs.

Laidlaw is not equivalent to a utility though. Laidlaw is taking a substantial amount of more

risk that public utilities would not take and do not have. The risks Laidlaw is taking include

construction risks, operating risks by holding the operating cost fixed, decoupling of fuel prices

to a separate price location and index, thereby taking fuel risks and revenue reduction risks by

reducing the price of the REC. Therefore, the comparison, as provided on pages 32, 33, and 34

of McCluskey's testimony, should not be given any weight. As the contract is written, Laidlaw

is potentially giving up all of its reversionary ownership rights to assure a contract that is

financeable for all parties concerned. There is no question that with no reversionary value in the

contract for Laidlaw, its return on equity is skewed. The Commission should not be swayed by

inflammatory returns on equity without considering the detailed attributes of the contract and

financing and the lack of equity reversion. Fund balances, debt coverage ratios, reserve accounts

and other things required by the banks for financing this project absorb cash flow that the equity

investors will never see and which may be absorbed in the cumulative reduction account. PSNH

and Laidlaw are proposing a contract which is financeable, and that should be of significant

Page 44 of 47

importance to the Commission which has not been properly addressed by the Staff.

Docket: DE 10-195

Q. On page 44 of Mr. McCluskey's testimony, he discusses, starting on line 10, the harmful

effect of this PPA to the development of competitive markets because of unfair protection

of Laidlaw. Do you agree?

A. No. Contracted renewable energy resources, such as Laidlaw, have to be base loaded and

designated as must run facilities in order to generate the RECs required. Once the contract is

signed, they have no further impact on the competitive marketplace. They will displace other

forms of high cost generation that does bid into the market that is not subject to the protections of

contract operation. Laidlaw's plant will be operating at less than the cost of existing oil-fired

plants and will likely reduce oil-fired generation in the New England ISO. This is not negative,

it is very positive. It will reduce pollution and ultimately be part of the reason for substantial

closure of idled oil-fired plants in the region, reducing capacity payments and costs for everyone

in ISO New England. Furthermore, it is incorrect to say that Laidlaw has less incentive to cut its

operating costs to maximize its profits. Laidlaw has full incentive to cut its operating costs

because Laidlaw has fixed its operating costs, it has fixed its REC payments, it has fixed its

wood pricing index, and it has fixed its capacity costs. It has no choice but to operate in an

extremely efficient, reliable, and effective manner. In total, the testimony on page 44 is simply

not relevant to the contract at hand. To a large degree it assumes facts that do not and will not

exist.

Q. On page 45, Mr. McCluskey starting at line 9 talks about the conflict with least cost

Page 45 of 47

integrated resource planning. What is your opinion?

Docket: DE 10-195

A. Least cost planning and the development of new Class I RECs are mutually exclusive. Class I

RECs, which provide capacity, energy, reliability, fuel diversity, and the maximum level of

certainty of delivery will be above the market price of base electric energy generated from plants

whose current basis is already imbedded in the system. To compare this to least cost integrated

resource planning and then condemn the PPA with Laidlaw is misleading and should be ignored

by the Commission.

Q. Concord Steam has filed to intervene in this case and expresses concern regarding the

impact on the cost of wood that Laidlaw might create in southern New Hampshire. Do you

agree with Concord Steam's concerns?

A. No.

Q. Why

A. Concord Steam's concerns do not make sense to me. In order for Laidlaw to reach into the

southern New Hampshire wood basket which Concord Steam purchases in, it is going to have to

pay a trucking differential of probably \$18 per ton. This is in part due to the weight limitations

on Interstate 93 which are lower than weight limitations on Rt. 2 in northern New Hampshire. If

wood is passed through the Laidlaw contract at the Schiller price of \$34 per ton, Laidlaw would

have to buy wood in southern NH at \$16 per ton. This is likely to have no negative impact on

Concord Steam. Conversely, if Laidlaw wanted to match the regional price around Concord of

\$28 per ton, it would be loading in wood at \$46 per ton in Berlin. At \$46 per ton in Berlin, a

wide variety of new wood baskets in the local region would open up reducing the price of wood

and eliminating the need to reach into the Concord area.

Q. Does this conclude your testimony.

A. Yes.